가장 Condorcet 시스템 순위 쌍보기인가?

위 쌍 정말 최고의 Condorcet 시스템?

특정 선거에 관한 Condorcet 승자가있는 경우, every Condorcet method will determine this same winner. ; 그들은 모두 서로만큼 좋은거야, 이 시점에서.

다른 방법이 다를, 그러나, 에 Condorcet 승자가없는 그들은 어디 가지 경우를 해결하는 방법, which is to say when there is no candidate who wins all the pairwise match-ups against the other candidates. ; 실제로 이러한 경우는 거의 틀림없이 빈번, 하지만,, 틀림없이, 여전히 발생, 그리고 그와 같은 시나리오를 구성하기 쉽다.

I suggest that once we’re resolved to use a Condorcet method to evaluate our elections the distinction of which particular one to use is of far lesser importance. ; 모두 사이 좋은 차이가있다지만, 약간 다른 수학적 특성을 가진, 실제적인 측면에서 쉽게 비 이론가에 의해 시각과 이해하는 방법을 선택하는 것이 필수적입니다, 간단하고 구현하기, 입법 및 교환 기술을 모두.

이 기준으로 I는 Condorcet - 토끼 같은 "하이브리드"솔루션을 할인 (Condorcet-IRV), 및, 이들은 일반적으로 두 가지 집계 시스템을 포함 이후: ; Condorcet 승자가 발견 된 경우, 우리는 Condorcet 집계 좋은거야, 그렇지 않은 경우 것은 우리는 집계를 다시 계산하고, IRV에 따라 (예를 들어,). ; 아니 큰 거래 우리는 컴퓨터에 의해 계산하는 경우, 하지만 매입에없는 둘째의 생각에, 없이 잘 작동 좋은 시스템이 서로 다른 집계 때.

결국은 아래로왔다, 내 추정, Shultze 대 조 쌍에, 내가 그 순위 쌍을 찾을 균형과 따라하기 쉽게, which is why I propose Ranked Pairs at this time. ; 그러나 쌍과 Shultze 순위는 동일한 결과를 제공 "대부분의 시간."

또한 포함 된 이메일 대화를 종사 박사. 니콜라우스 Tideman, 경제 학부, 버지니아 공대의, 조 - 쌍 방법의 발신자 및 투표 이론의 분야에서 눈에 띄는 기여, 나는 나와 함께 대화에서 자신의 인내심에 대해 그에게 감사.

박사. Tideman 내가 최소 최대를 고려해야한다고 제안, .뿐만 아니라 & NBSP;; 최소 최대 수학적으로 매우 간단합니다, 수학적으로 단순하면서, 우리는 Condorcet 집계를 일단, 그것은 나에게로 설득력도 순위 쌍만큼 명확하지 않다.

또한 (제한된 경우에) "독립 클론의"기준을 실패, 이는 결과가 "유사한"후보의 존재에 민감 할 수 있다는 것을 의미, 박사 Tideman는 조언으로 생각, 투표와 설문 조사에서 유권자 순위의 패턴과 자신의 경험을 바탕으로: ; "나는 우리가 50 만 오 후보를 비교 검토하는 경우보다 더와 실제 선거 또는 설문 조사를 기반으로하는 것이 당신에게 더 돈을주는 것 1,000 유권자, 순위 남여 최소 최대가 아닌 다른 결과를 생산 어디 우리는 하나의 예를 찾을 것, though I would agree that Ranked Pairs would handle such a case in a more satisfying way. ; 당신이 원하는 경우 나 내기의 다른 측면을 촬영합니다, 당신은 나에게 최소한의 가능성을 제공 할 필요가 10 "1로

그는 더 이상 그 조언: ; 점점 문제가 없으면 "투표자 순위 쌍의 복잡성을 수락, it is the better choice. ; 그러나 그들은 복잡성 주저하는 경우, 다음 최소 최대가 달성된다는 것이 가장 좋은 방법 일 수 있습니다. "

모두 모두, 다음, 나는 조 쌍을 제안하는 것은 여기에서 할 수있는 방법입니다, and I have worked through the details accordingly. ; 하지만 다른 Condorcet 방법과, 그럼에도 불구하고 충분히 만족할 것, 그것은 가능성으로 간주 된 경우, 및 세부 사항의 일부 변경됩니다 동안, 이러한 변화는 엄청난되지 않을 것.

즐겨 찾기에 추가 블로그 바로 가기.